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Abstract—The detection of gold nanoparticles (AuNPs) is
critical in photoacoustic imaging due to their potential ap-
plications in biomedical research and cancer detection. This
paper compares two methods for detecting AuNPs in simu-
lated environments: the Least Squares Method and the Direct-
Inverse Product Method, the latter developed by the authors.
Simulations were conducted using MATLAB, considering three
chromophores: oxyhemoglobin, deoxyhemoglobin, and AuNPs as
the contrast agent. Results demonstrate that the Direct-Inverse
Product Method requires fewer wavelengths (two) compared to
the Least Squares Method (at least N + 1), achieving similar or
better detection accuracy under specific conditions. The highest
correlation of 0.8077 was obtained with radially decreasing
AuNP concentrations in regions with varying oxyhemoglobin
and deoxyhemoglobin concentrations. This study highlights the
strengths and limitations of both methods, emphasizing the trade-
offs between computational simplicity and detection robustness.

Index Terms—photoacoustic imaging, exogenous contrast
agents, gold nanoparticles, cancer, biomedical imaging

I. INTRODUCTION

Biomedical imaging allows the visualization of structures
and biological processes within a body. These images play
a critical role in diagnosing, treating, and monitoring various
medical conditions in organisms. Common methods of medical
imaging include computed tomography, magnetic resonance
imaging, ultrasound, and the technique central to this paper:
photoacoustic imaging [1]–[4].

Combining light and sound, photoacoustic imaging creates
detailed visuals of internal structures. A pulsed laser targets
a tissue, and as the light is absorbed, the tissue heats and
emits sound waves. Captured by transducers, these waves are
transformed into images that display the internal structure
of the body based on the optical absorption properties of
the tissue’s molecules [5]–[7]. This technique has proven
effective in a variety of applications such as tumor detection,
brain vascular imaging, imaging blood vessels, quantifying
oxygen saturation, identifying melanoma, and detecting lipids
in vessels [5].

In order to facilitate the visualization of specific processes
or structures within the body, an exogenous agent can be
introduced. In photoacoustic imaging, an exogenous contrast
agent is a substance that absorbs light strongly at specific
wavelengths, thereby enhancing the delineation and contrast

of areas of interest within the images [5]. For instance, gold
nanoparticles can adhere to different types of cells upon
injection. Detecting cancer cells within a biomedical image
can be challenging; however, the use of gold nanoparticles
with suitable optical properties can significantly improve the
detection of these cells. Subsequently, an algorithm that uses
photoacoustic images with different wavelengths can be de-
veloped to detect the gold nanoparticles, thereby aiding in the
precise localization of cancer cells or immune cells (see Fig.
1) [8].

In general, a photoacoustic image differs from another if dif-
ferent wavelengths are used in their formation, as the contrast
of each image depends on the specific wavelength employed.
This is because the optical absorption of chromophores1 varies
across the electromagnetic spectrum. Based on this principle,
several studies have developed methods that utilize multiple
photoacoustic images to detect contrast agents [8]–[10]. These
methods take advantage of the distinct optical absorption
properties of chromophores, thereby enhancing the diagnostic
capabilities of the imaging.

The purpose of this article is to present a new method for
detecting exogenous contrast agents, optimizing photoacoustic
imaging resources by utilizing only two wavelengths. As a
performance metric, the developed method will be compared
to the least squares method, which is the most commonly used
in the references consulted for drafting this article, using the
image correlation.

II. METHODOLOGY

A. Photoacoustic Imaging

When the photoacoustic effect is induced such that the laser
energy distribution is uniform throughout the tissue, the initial
acoustic pressure in the tissue, denoted as p0 in Pa, is given
by the following expression [4], [11]:

p0(r, λ) = Γµa(r, λ)F (λ) (1)

1In photoacoustics, a chromophore is defined as a substance that absorbs
light. The absorption of light by the chromophore results in the conversion of
optical energy into thermal energy. Chromophores may be endogenous, such
as blood, water, lipids, and melanin, or exogenous, serving as contrast agents.
[4], [9]



The initial pressure distribution p0 is influenced by three key
factors: the thermoacoustic conversion efficiency, also known
as the Grüneisen parameter Γ (dimensionless), the local optical
absorption coefficient µa(r, λ) in m−1, and the optical laser
fluence F (λ) in J/m2.

Note that both the initial pressure p0 and the local optical
absorption coefficient µa are dependent on the position r, as
they represent a distribution of magnitudes. This means their
values depend on the specific point within the tissue where
they are measured. Similarly, the local optical absorption
coefficient µa and the fluence F are wavelength-dependent
(λ) because the optical absorption of the chromophores in
the tissue varies across the electromagnetic spectrum and the
energy output from two different lasers does not necessarily
have to be the same.

Given chromophores 1, . . . , n, . . . , N , the optical absorption
of the n-th chromophore is directly proportional to its local
concentration Cn(r) in mol/m3 and its specific absorption
coefficient spectra εn(λ) in m2/mol. Therefore, the local
optical absorption coefficient corresponds to the sum of the
individual optical absorptions of each chromophore [9]:

µa(r, λ) =

N∑
n

Cn(r)εn(λ) (2)

B. Detection of chromophores

Let m be the chromophore we want to detect; the method
for its detection is based on defining an equation as follows:

Ξm(r) =

{
1 ⇐⇒ The concentration of m is non zero
0 ⇐⇒ The concentration of m is zero. (3)

In this equation, the term Ξm(r) denotes an image that
shows a distribution of all points containing a non-zero con-
centration of the chromophore m of interest by assigning a
value of 1 to those pixels.

Considering a real example, Fig. 1 illustrates the contrast
between gold nanoparticles (AuNP) adhering to cancer cells
traveling through a blood vessel and the capability of image
ΞAuNP(r) to detect cancer by locating these nanoparticles.

The approach to approximating the image Ξm(r) is not
unique. In this article, we will use two methods: one already
existing in the literature, the least squares method, and the
other developed by the authors, which we will refer to as the
direct-inverse product method.

C. Least squares method

The least squares method starts from having more equations
than variables, which means more images than chromophores.
That is, if we have I images and N chromophores, then I >
N . This condition is fundamental for applying the least squares
method.

If we group the I measured photoacoustic images into a
vector p as follows:

(a) Reality (b) ΞAuNP(r)

Fig. 1: (a) Gold nanoparticles (AuNP) adhering to cancer cells
in a blood vessel. (b) Image showing the location of the cancer
cells by detecting the gold nanoparticles.

p(r) =


p1(r, λ1)

...
pi(r, λi)

...
pI(r, λI)

 (4)

We can define the i-th photoacoustic image as:

pi(r, λi)︸ ︷︷ ︸
measurement

= ΓC(r)ε(λi)F (λi) + ei︸ ︷︷ ︸
photoacoustic image model with associated measurement error

(5)
In (5), an error ei is assigned to each photoacoustic image.

This error is arbitrary and allows the concentration matrix
Cm(r) of interest to be algebraically solved using the pro-
cedure shown below. If the following matrices are defined:

A =


Γε1(λ1)F (λ1) · · · Γεn(λ1)F (λ1) · · · ΓεN (λ1)F (λ1)

...
. . .

...
. . .

...
Γε1(λi)F (λi) · · · Γεn(λi)F (λi) · · · ΓεN (λi)F (λi)

...
. . .

...
. . .

...
Γε1(λI)F (λI) · · · Γεn(λI)F (λI) · · · ΓεN (λI)F (λI)


(6)

C =


C1(r)

...
Cn(r)

...
CN (r)

 (7)

e =


e1
...
en
...
eN

 (8)

It is possible to formulate the following system of equations:



p(r) = AC+ e (9)

The least squares method, as its name suggests, involves
taking the squared Euclidean norm of the error vector e, which
we will denote as S,

S = ∥p−AC∥ 2 =

I∑
i=1

ei
2 (10)

and minimizes this value S by taking its matrix derivative
with respect to C.

∂S

∂C
= 0 (11)

To find C, note that the squared norm is expanded as:

S = (p−AC)⊤(p−AC) (12)

Expanding this product:

S = p⊤p− 2p⊤AC+C⊤A⊤AC (13)

The partial derivative of S with respect to C (using matrix
differentiation rules) is:

∂S

∂C
= −2A⊤p+ 2A⊤AC (14)

To minimize S, we equate the derivative to zero, eliminate
the factor 2 (as it does not affect the solution), and reorganize:

A⊤p+A⊤AC = 0 (15)

Solving for C, the solution is:

C = (A⊤A)−1A⊤p (16)

Let m be our chromophore of interest. If we extract Cm(r)
from C, then we can define our matrix detection (3) as:

Ξm(r) =

{
1 ⇐⇒ Cm(r) ̸= 0
0 ⇐⇒ Cm(r) = 0

(17)

Finally, note that applying this method fundamentally re-
quires knowledge of all the parameters in the matrix A, as it
involves the operator (A⊤A)−1A⊤, which is applied to the
measured images p.

Therefore, the Grüeneisen coefficient Γ, the fluence F (λi),
and the molar absorption coefficients must be well known at
the different wavelengths λ1, · · · , λi, · · · , λI .

D. Direct-inverse product method

The direct-inverse product method consists of a way
to approximate the detection image (3) independently of
the chromophores present in the tissue, using only two
wavelengths. These wavelengths are selected within a re-
gion where the geometry of the molar absorption curves
(ε1(λ), · · · , εn(λ), · · · , εN (λ)) is appropriate.

The method starts by multiplying photoacoustic images
directly and inversely, as expressed in the following equation:

ξm(r) =

K∏
k=1

p0(r, λ
k)

p0(r, λk)
(18)

In this equation, K is a free parameter defined as the
number of iterations needed to approximate Ξm(r). This term
is closely related to another free parameter called the threshold
T , whose relationship will be discussed after defining all the
symbols in (18).

The superscript k in the variable λk does not represent a
power or any similar operation. Both λk and λk are wave-
lengths that satisfy geometric properties, which are detailed
below:

Given the presence of chromophores 1, . . . , n . . . , N during
the detection of the contrast agent m, the following must be
satisfied:

• We define a wavelength as being of the form λk if it lies
within a region of the electromagnetic spectrum where
the specific absorption coefficient of the contrast agent
m is greater than the specific absorption coefficients of
the remaining N chromophores. Specifically,

εm(λk) > εn(λ
k), n = 1, . . . , N (19)

• We define a wavelength as being of the form λk if it lies
within a region of the electromagnetic spectrum where
the specific absorption coefficient of the contrast agent
m is less than the specific absorption coefficients of the
remaining N chromophores. Specifically,

εm(λk) < εn(λk), n = 1, . . . , N (20)

A set of specific absorption coefficients that satisfy (19) and
(20) can be visualized in Fig. 2. The red area contains all the
wavelengths of the form λk, and the blue area contains all the
wavelengths of the form λk.

Once all the terms have been defined, to understand how to
approximate Ξ(r) from ξ(r), we consider two distinct points,
r1 and r2, in space. The difference lies in the fact that r1
contains gold, while r2 does not. Specifically:{

Cm(r1) ̸= 0 ∧ Cn(r1) ̸= 0,

Cm(r2) = 0 ∧ Cn(r2) ̸= 0
(21)

Now, we will evaluate the points r1 and r2 in ξm(r) to
proof how the detection of the chromophore m works. If we
substitute (1) into (18), we obtain:



Fig. 2: Specific absorption coefficients of gold nanoparticles
as a contrast agent, and (AuNP), oxyhemoglobin (HbO2) and
deoxyhemoglobin (HbO)

ξm(r) =

K∏
k=1

�ΓF (λk)µa(r, λ
k)

�ΓF (λk)µa(r, λk)
(22)

If we express the local optical absorption coefficients as
the sum of the individual contributions from the absorption
of the contrast agent m and the N remaining chromophores
according to (2), the result is:

µa(r, λ
k)

µa(r, λk)
=

Cm(r)εm(λk) +
∑N

n=1 Cn(r)εn(λ
k)

Cm(r)εm(λk) +
∑N

n=1 Cn(r)εn(λk)
(23)

The inequality (19) implies that, since ε(λk) and ε(λk) are
positive real numbers, for each λk there exists a real number
σn(λk) > 1 such that:

εn(λ
k) =

εm(λk)

σn(λk)
(24)

Similarly, let σn(λk) > 1. Then, for each λk, the following
holds:

εn(λk) = εm(λk)σn(λk) (25)

Substituting (24) and (25) into (23) and factoring εm(λk)
and εm(λk), the result is:

µa(r, λ
k)

µa(r, λk)
=

εm(λk)

εm(λk)

Cm(r) +
∑N

n=1
Cn(r)
σn(λk)

Cm(r) +
∑N

n=1 Cn(r)σn(λk)
(26)

Now, substituting (26) into (22), we obtain:

ξm(r) =

K∏
k=1

F (λk)

F (λk)

εm(λk)

εm(λk)︸ ︷︷ ︸
Ak

Cm(r) +
∑N

n=1
Cn(r)
σn(λk)

Cm(r) +
∑N

n=1 Cn(r)σn(λk)︸ ︷︷ ︸
Bk(r)

(27)
Now, assuming we are in a region where the N irrele-

vant chromophores are uniformly distributed, i.e., Cn(r1) =
Cn(r2), it follows that:

Bk(r1) > Bk(r2) (28)

AkBk(r1) > AkBk(r2) (29)

K∏
k=1

AkBk(r1) >

K∏
k=1

AkBk(r2) (30)

ξ(r1) > ξ(r2) (31)

Therefore, if we choose a threshold T such that:

ξ(r1) > T > ξ(r2) (32)

We obtain the following approximation for (18) using
photoacoustic images:

Ξm(r) ≈

{
1 ⇐⇒ ξ(r) > T

0 ⇐⇒ ξ(r) < T
(33)

We describe (33) as an approximation because we cannot
guarantee that irrelevant chromophores are uniformly dis-
tributed. For instance, the distribution of hemoglobin varies
significantly depending on the quantity and organization of
blood vessels in specific tissue [12], [13]. However, it is
possible to limit the analysis of a biomedical image to a tissue
region where the distribution is approximately constant.

Furthermore, it is important to mention that the detection
quality of the contrast agent m is directly related to the
adjustment of the parameters K and T . Testing different
combinations can lead to more efficient detection. In the results
section, a comparison is made between two images formed
using different combinations of K and T to illustrate the
improvement of one over the other.

III. RESULTS AND DISCUSSION

A. Testing the Direct-Inverse Product Method

To verify the functionality of the method, three simulations
were conducted in MATLAB, as shown in Fig. 3, Fig. 4, and
Fig. 5. In all simulations, three chromophores were considered:
1) oxyhemoglobin (HbO2), 2) deoxyhemoglobin (Hb), and 3)
gold nanoparticles (AuNP) as the contrast agent. The objective
is to simulate an environment similar to that of cancer cell
detection by identifying gold nanoparticles, as described in
[8].

To generate the images shown in the figures, simulations
were conducted using the parameters listed in Table I. For each
chromophore’s concentration, an NxM grid was created with
random values within the intervals specified in the table. The
absorption coefficients for each chromophore were derived
from the normalized data used to construct Fig. 2. In all
simulations, the Grüneisen coefficient and laser fluence were
held constant to ensure that the analysis focused solely on the
optical absorption properties of the chromophores.

In the figures, image (a) represents the actual concentration
of gold nanoparticles. Images (b) and (c) show the results



TABLE I: Numerical values used in simulations

Parameter Sim. Fig. 3 Sim. Fig. 4 Sim. Fig. 5
Grid (N ×M ) 1000× 1000

CAuNP [0, 25] [0, 75]
CHb02 [0, 100] [0, 400]
CHb0 [0, 100] [0, 400]
λk 720nm
λk 930nm

εAuNP(λ
k) 0.906875

εAuNP(λk) 0.275261
εAuNP(880nm) 0.341918395

εHb02 (λ
k) 0.283572

εHb02 (λk) 0.31722
εHb02 (880nm) 0.940352021

εHb(λ
k) 0.550633

εHb(λk) 0.995763
εHb(880nm) 0.301687764

Γ 0.1
F 100
K 5 and 10
T 0.75 and 0.04

Note: In the third simulation in Fig. 5, Hb02 and Hb concentrations vary
within the range [0,400] but are not uniformly distributed. The grid is
divided into four 500 × 500 submatrices, each containing concentrations
in the intervals [0, 100], [100, 200], [200, 300], and [300, 400], arranged
counterclockwise.

of applying the contrast agent detection method to locate the
gold nanoparticles. The difference between them is that for
(b), the iterations were set to K = 5 with a threshold of
T = 0.75, while for (c), the number of iterations was increased
to K = 10 and the threshold was lowered to T = 0.04.
These images aim to demonstrate that the quality of gold
nanoparticle detection is directly influenced by the adjustment
of the parameters K and T . In this case, more iterations with
a lower threshold result in more efficient detection of the con-
trast agent, albeit with the drawback of some false positives.
Finally, image (d) corresponds to a photoacoustic image taken
at 880nm, intended to illustrate that a photoacoustic image
without wavelength-specific criteria is not effective for contrast
agent detection

The simulation depicted in Fig. 3 aims to demonstrate the
method’s capability to detect regions with AuNP concentra-
tions. Elliptical masks with random distributions of the con-
trast agent were created for this purpose. The figure illustrates
that the detection method successfully identifies areas with
higher concentrations of AuNP, resulting in brighter contrasts
in regions containing the contrast agent, and darker contrasts
in areas without it.

To assess the method’s limitations, the simulation depicted
in Fig. 4 was conducted. In this simulation, a highly con-
centrated AuNP region was created at the center of the grid,
with the concentration of the contrast agent decreasing radially.
The results indicate that the detection method becomes less
effective as the concentration of the contrast agent decreases
relative to the concentration of other non-target chromophores.
Therefore, to ensure optimal performance of the method, it is
crucial to maintain a sufficient concentration of the contrast
agent.

To further challenge the method and gain a clearer under-
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Fig. 3: Detection of elliptical masked regions containing
concentrations of gold nanoparticles. (a) Concentration of gold
nanoparticles, CAuNP(r). (b) Detection of gold nanoparticles,
ΞAuNP(r), with K = 5 and T = 0.75. (c) Detection of gold
nanoparticles, ΞAuNP(r), with K = 10 and T = 0.04. (d)
Photoacoustic image at 880nm, p0(r, 880nm).

standing of the impact of varying the parameters K and T , the
simulation depicted in Fig. 5 was conducted. In this scenario,
the concentrations of HbO2 and Hb were not uniformly
distributed across the tissue. Instead, the mesh was divided into
four equal sections. As the regions are traversed counterclock-
wise, the concentration of non-target chromophores gradually
increases. This setup allows for two critical observations:
First, as the concentration of blood components increases, the
method’s effectiveness in detecting regions with low AuNP
concentrations diminishes. Second, increasing the number
of iterations K and appropriately adjusting the threshold
T significantly enhances the method’s detection capability.
However, it is important to mention that in a real experiment, it
should be considered that gold nanoparticles are an excellent
contrast agent because, for the same volume element, pure
gold is capable of generating a concentration up to 6300 times
greater than that of hemoglobin (see Appendix B).

Finally, it is important to note that the primary limitation of
these results is that the method’s effectiveness has been vali-
dated only through simulations. The potential impact of real-
world factors, such as acoustic and electronic noise, as well
as light scattering and attenuation, remains uncertain when
applying the photoacoustic image multiplication as described
in (18).
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Fig. 4: Detection of radially decreasing gold nanoparticles.
(a) Concentration of gold nanoparticles, CAuNP(r). (b) De-
tection of gold nanoparticles, ΞAuNP(r), with K = 5 and
T = 0.75. (c) Detection of gold nanoparticles, ΞAuNP(r), with
K = 10 and T = 0.04. (d) Photoacoustic image at 880nm,
p0(r, 880nm).

B. Comparison of the Least Squares Method and the Direct-
Inverse Product Method Using Image Correlation

In this section, the performance of the Direct-Inverse Prod-
uct Method is evaluated through three simulations conducted
in MATLAB, resulting in two figures per simulation. In all
simulations, three chromophores were considered: 1) oxyhe-
moglobin (HbO2), 2) deoxyhemoglobin (Hb), and 3) gold
nanoparticles (AuNP) as the contrast agent.. Additionally, the
concentration matrices from the previous section were reused
for each simulation.

Figures 6 and 7 illustrate the first simulation, which in-
volves elliptical masked regions with concentrations of gold
nanoparticles. The second simulation, shown in Figures 8 and
9, examines radially decreasing distributions of gold nanopar-
ticles. Finally, Figures 10 and 11 present the third simulation,
where radially decreasing gold nanoparticles are combined
with regions of varying oxyhemoglobin and deoxyhemoglobin
concentrations, adding complexity to the analysis.

In each simulation, gold nanoparticles were detected using
the Least Squares Method (as described in ??) and the Direct-
Inverse Product Method (as described in ??). The iterations K
were varied from 0 to 100 in steps of 2, while the threshold
T ranged from 0 to 1 in increments of 0.001.

Figures 6, 8, and 10 display the correlation values between
the image detecting gold nanoparticles using the Least Squares
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Fig. 5: Detection of radially decreasing gold nanoparticles with
regions of varying oxyhemoglobin and deoxyhemoglobin con-
centrations.(a) Concentration of gold nanoparticles, CAuNP(r).
(b) Detection of gold nanoparticles, ΞAuNP(r), with K = 5
and T = 0.75. (c) Detection of gold nanoparticles, ΞAuNP(r),
with K = 10 and T = 0.04. (d) Photoacoustic image at
880nm, p0(r, 880nm).

Method and the images generated by the Direct-Inverse Prod-
uct Method for the various K and T values tested. The
maximum correlation values obtained for each simulation are
summarized in Table II.

TABLE II: Comparison of Results Obtained in Simulations

Parameter Sim. Fig. 6,7 Sim. Fig. 8,9 Sim. Fig. 10,11
K (iterations) 6 14 2
T (threshold) 0.104 0.010 0.428
Maximum correlation 0.5766 0.7580 0.8077

Furthermore, Figures 7, 9, and 11 illustrate the follow-
ing: (a) the actual location of the gold nanoparticles, (b)
the detection using the Least Squares Method, and (c) the
image with the highest correlation obtained using the Direct-
Inverse Product Method. Additionally, for Fig. 11, a fourth
image (d) has been included, representing the sum of the
oxyhemoglobin and deoxyhemoglobin concentrations, which
increase counterclockwise.

Regarding the first simulation, associated with Figures 6
and 7, the method’s capability to detect regions with AuNP
concentrations is demonstrated. The correlation values range
from 0 to 0.5766, as shown in Fig. 6. As the number of iter-
ations increases, the threshold T converges to approximately
0.3, represented by the green region in the heatmap.



Figure 7 highlights the differences between detection meth-
ods, where the Direct-Inverse Product Method introduces
false positives and negatives. This behavior is attributed to
repeated iterations, which amplify the discrepancies between
pixels of higher and lower magnitudes. These discrepancies,
while potentially limiting accuracy, underline the method’s
sensitivity to iterative adjustments and the need for parameter
optimization in practical applications.
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Fig. 6: Heatmap of the correlation as a function of iterations
K and threshold T for the distribution of elliptical masks rep-
resenting the concentration of gold nanoparticles, comparing
images generated by the Least Squares Method and the Direct-
Inverse Product Method.
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Fig. 7: Detection of elliptical masked regions containing
concentrations of gold nanoparticles. (a) Gold nanoparticle
concentration, CAuNP(r). (b) Detection of gold nanoparticles
using the Least Squares Method. (c) Maximum correlation
image for the detection of gold nanoparticles using the Direct-
Inverse Product Method with optimal iterations (K = 6) and
optimal threshold (T = 0.104).

Similarly, in the simulation associated with Figures 8 and
9, the method’s capability to detect regions with AuNP con-
centrations is demonstrated. The correlation values range from

0 to 0.7580, as shown in Fig. 8. As the number of iterations
increases, the threshold T converges to approximately 0.5, rep-
resented by the orange region in the heatmap. This corresponds
to the highest average correlation among the three simulations.

In Fig. 9, the differences between the methods are observed
primarily at the circle’s edge and its exterior. These results
demonstrate the successful detection of all regions with higher
concentrations, validating the method’s effectiveness in han-
dling radially decreasing distributions.
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Fig. 8: Heatmap of the correlation as a function of iterations
K and threshold T for the distribution of radially decreasing
gold nanoparticles, comparing images generated by the Least
Squares Method and the Direct-Inverse Product Method.
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Fig. 9: Detection of radially decreasing gold nanoparticles.
(a) Gold nanoparticle concentration, CAuNP(r). (b) Detection
of gold nanoparticles using the Least Squares Method. (c)
Maximum correlation image for the detection of gold nanopar-
ticles using the Direct-Inverse Product Method with optimal
iterations (K = 14) and optimal threshold (T = 0.7580).

Finally, in the simulation associated with Figures 10 and 11,
gold nanoparticles are successfully detected with correlation
values ranging from 0 to 0.8077. This experiment achieves



the highest correlation value; however, the correlation also
converges to the lowest average among the three experiments,
approximately 0.2, as indicated by the light blue region in Fig.
10.

Figure 11 reveals that the Direct-Inverse Product Method
introduces a higher number of false positives in the first quad-
rant, where the concentrations of oxyhemoglobin and deoxy-
hemoglobin are elevated. Interestingly, as these concentrations
increase further, the number of false positives decreases, but
this comes at the expense of introducing false negatives in
other regions. This trade-off underscores the sensitivity of the
Direct-Inverse Product Method to variations in chromophore
concentrations and highlights the need for further parameter
optimization in complex tissue environments.
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Fig. 10: Heatmap of the correlation as a function of iterations
K and threshold T for the distribution of radially decreasing
gold nanoparticles with regions of varying oxyhemoglobin
and deoxyhemoglobin con- centrations, comparing images
generated by the Least Squares Method and the Direct-Inverse
Product Method.

IV. CONCLUSION

This study presented a comparative analysis of the Least
Squares Method and the Direct-Inverse Product Method, the
latter developed by the authors, for detecting gold nanoparti-
cles (AuNPs) in photoacoustic imaging. Through three simu-
lated scenarios, involving different chromophore distributions
(oxyhemoglobin, deoxyhemoglobin, and AuNPs), the Direct-
Inverse Product Method demonstrated its capability to achieve
high correlation values using only two wavelengths. The
highest correlation (0.8077) was achieved in the most complex
scenario, highlighting the method’s robustness in handling
heterogeneous tissue environments.
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Fig. 11: Detection of radially decreasing gold nanoparti-
cles with regions of varying oxyhemoglobin and deoxyhe-
moglobin con- centrations. (a) Gold nanoparticle concentra-
tion, CAuNP(r). (b) Detection of gold nanoparticles using the
Least Squares Method. (c) Maximum correlation image for
the detection of gold nanoparticles using the Direct-Inverse
Product Method with optimal iterations (K = 0.2) and optimal
threshold (T = 0.428). (d) Concentrations of oxyhemoglobin
and deoxyhemoglobin increasing counterclockwise.

The results underscore the importance of optimizing the
parameters K and T , as they significantly influence the detec-
tion quality. Proper adjustment of these parameters enhances
sensitivity, particularly in scenarios with low contrast agent
concentrations. However, the method’s reliance on the geom-
etry of molar absorption curves limits its general applicability
compared to the Least Squares Method, which remains robust
across all tested conditions.

One of the primary limitations of this study is that the
Direct-Inverse Product Method was validated only in con-
trolled simulations. Experimental challenges such as noise,
light scattering, and attenuation must be addressed to en-
sure its reliability in real-world applications. Furthermore,
the method’s iterative nature introduces false positives and
negatives, particularly in regions with varying chromophore
concentrations, emphasizing the need for further parameter
tuning.

Despite these limitations, the Direct-Inverse Product Method
offers a computationally simpler alternative to the Least
Squares Method in scenarios with wavelength constraints.
Table III provides a summary of the key differences between
these methods, highlighting the trade-offs between computa-



tional simplicity and general applicability.

TABLE III: Comparison Between the Least Squares Method
and the Direct-Inverse Product Method

Direct-Inverse Product Method Least Squares Method
Requires only 2 wavelengths. Requires at least N + 1 wave-

lengths.
Does not require knowledge of the
Grüeneisen coefficient or fluence.

Requires knowledge of the
Grüeneisen coefficient and fluence.

Applicable only when the geome-
try of the molar absorption curves
is appropriate.

Applicable under all conditions.

Based on an analysis of the geom-
etry of molar absorption curves.

Based on linear regression.

Future work will focus on experimental validation and
extending the method to scenarios where the properties defined
in (19) and (20) are not satisfied. The potential for applications
in areas such as cancer detection, where precise nanoparticle
localization is critical, underscores the significance of further
developing this approach.

APPENDIX A
IMPLICATIONS OF THE CHROMOPHORE’S PHYSICAL

PROPERTIES ON CONCENTRATION

Consider a region of space with a volume VT in m3.
Let n be an arbitrary chromophore, and let Cn represent its
concentration in mol/m3 within that volume. Then:

Cn =
ηn
VT

(34)

Where ηn represents the moles of n within VT . Now, if n
occupies a mass mn in kg and a volume Vn in m3 within VT ,
the molar mass Mn in kg/mol and the density ρn in kg/m3

are given by the following expressions:

Mn =
mn

ηn
(35)

ρn =
mn

Vn
(36)

By manipulating (35) and (36), equating the mass and
solving for the moles, we can rewrite (34) as:

Cn =
ρn
Mn

Vn

VT
(37)

Assume the physical properties of the gold nanoparticles
are ρAuNP ≈ 19300kg/m3 and MAuNP ≈ 0.197kg/mol.
Meanwhile, the molar mass of hemoglobin is MHbO2 ≈
MHb ≈ 64.5kg/mol. Now, if we assume that the density
of hemoglobin is approximately that of water, i.e., ρHbO2

≈
ρHb ≈ 1000kg/m3 [14]. If both chromophores occupy a
volume V within VT , by substituting into (34):

CAuNP ≈ (97969.54)
V

VT
(38)

CHbO2
≈ CHb ≈ (15.50)

V

VT
(39)

Note that these calculations demonstrate that gold nanopar-
ticles are an excellent contrast agent not only because of their
optical absorption properties but also because, within the same
volume element, they can achieve concentrations up to 6300
times greater than that of hemoglobin. It is important to note
from (2) that optical absorption is influenced not only by the
specific absorption coefficients of each chromophore but also
by their concentration and, consequently, by their physical
properties.
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